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Abstract
Realtime MRI provides useful data about the human vocal tract,
but also introduces many of the challenges of processing high-
dimensional image data. Intuitively, data reduction would pro-
ceed by finding the air-tissue boundaries in the images, and
tracing an outline of the vocal tract. This approach is anatomi-
cally well-founded. We explore an alternative approach which
is data-driven and has a complementary set of advantages. Our
method directly examines pixel intensities. By analyzing how
the pixels co-vary over time, we segment the image into spa-
tially localized regions, in which the pixels are highly correlated
with each other. Intensity variations in these correlated regions
correspond to vocal tract constrictions, which are meaningful
units of speech production. We show how these regions can be
extracted entirely automatically, or with manual guidance. We
present two examples and discuss its merits, including the op-
portunity to do direct data-driven time series modeling.
Index Terms: human speech production, phonetics, realtime
mri, vocal tract, data reduction

1. Introduction
Realtime Magnetic Resonance Imaging (rtMRI) has been
demonstrated as a useful and promising technique for collect-
ing speech production data. It affords vocal tract imaging with
good spatial and temporal resolution, as well as providing a full
midsagittal view of the vocal tract. However, rich data like these
bring all the challenges associated with high-dimensional data
(i.e., the curse of dimensionality). For instance, a commonly
published rtMRI protocol involves reconstructing images with
a frame size of 68×68 pixels. Considering each pixel as a time-
varying feature of the data, this means that even these small
images constitute 4624-dimensional data.

The inherent dimensionality of the data is obviously much
lower. The images represent a small number of objects moving
in constrained ways. Linguistically-motivated descriptions of
speech production (e.g., articulatory phonology) posit between
8 and 16 articulatory variables [1]. Even biomechanical mod-
els of the vocal tract contain only about 40 to 50 variables [6].
Given this, one would expect a dimensionality reduction of at
least two orders of magnitude.

Performing this reduction is a complex task, of course, and
various methods of doing it can be devised. The method one
chooses can depend on (a) theoretical concerns about the lin-
guistic variables of interest, and how naturally they correspond
to the dimensions of the reduction (i.e., interpretability of the re-
duction), and (b) practical requirements of processing the data,
such as robustness, precision, efficiency, automaticity.

The most intuitive way to process data of this type is by
finding the air-tissue boundaries represented in the image. Such
boundary-tracing can be done in the spatial domain [7] or in
the frequency domain [4]. This kind of data reduction has
a straight-forward interpretation, since it traces an outline of
physically extant structures. Highly useful measurements, such
as the vocal tract area function, can be determined from these
boundaries. However, in seeking linguistically-relevant vari-
ables, boundary-finding is simply a first step. Variables like
constrictions must be defined and similarly extracted from the
boundaries. This poses a number challenges, both theoretically
and practically. By that same token, these methods tend to lack
robustness, since boundaries may appear poorly defined due to
noise and smearing. Higher degrees of automaticity can bring
high computational demand, as well.

This paper discusses an alternative kind of data reduction,
which directly uses the pixel intensity values of the vocal tract
images. It takes advantage of how those intensities vary and
co-vary over time to segment the images into regions in which
pixels are highly correlated with each other. Such methods hold
promise for robustly capturing the details of articulatory move-
ment directly from the images. They are simple, and they avoid
the need for computing intermediate segmentations, such as air-
tissue boundaries.

Over time, the intensity values of an individual pixel reflect
changes in tissue density at a particular location in the image
plane. If we assume a lack of head motion, then pixel locations
reflect tissue changes in the midsagittal plane, as well. At the
same time, localized changes in tissue density along the vocal
tract is the definition of a vocal tract constriction, except that
constrictions are on a larger scale than a single pixel. Thus, vo-
cal tract constrictions should manifest in the images as localized
regions, in which the pixels are highly correlated over time.

We will show that intensity variations in these regions cor-
respond to constriction degrees. To that end, we demonstrate
how these correlated regions can be extracted with minimal
manual guidance, and we will show an algorithm for extracting
them automatically from the data. This kind of data analysis
is a simple, efficient and robust method for extracting certain
variables relevant to speech production. We hope to discuss and
illustrate the kinds of applications for which it is appropriate,
as well as to mention the kinds of applications for which it is
inappropriate.

Section 2 provides a brief description of how the rtMRI data
were acquired. In section 3, we describe the methods for man-
ual and automatic selection of correlated regions. Section 4 pro-
vides an illustration of the proposed methods by application to
specific data sets. This is followed by a brief discussion of the
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Figure 1: Mean image with correlated regions overlaid (manu-
ally selected). White crosses mark the selected pixels, which are
used to build the regions. Regions are outlined by white dots.

relative merits of our method (section 5), and finally some con-
cluding remarks in section 6.

2. Data Acquisition
The subjects spoke while laying in the scanner. Meanwhile,
we collected real-time MR image sequences of the vocal tract
from a midsagittal view. Audio recordings of the subjects vocal-
izations were also acquired, but were not utilized in this study.
Our acquisition setup utilizes a GE Signa 1.5T scanner with a
13 interleaf spiral gradient echo pulse sequence. The MR pulse
repetition time was TR = 6.5 ms. The slice thickness was ap-
proximately 3mm. A sliding window reconstruction was em-
ployed, at a rate of 22.44 frames per second. The field of view
was adjusted for the subject’s head size, so that images covered
an area of 18.4 cm by 18.4 cm at a resolution of 68 × 68 pix-
els. Further details regarding the recording/imaging setup can
be found in [2] and [3], and a sample video can be found at
http://sail.usc.edu/span.

Subjects were asked to speak a variety of read stimuli, as
well as to speak spontaneously about various topics. Indeed,
we have collected a fairly large corpus of rtMRI data for vari-
ous studies. The analyses presented here were designed to help
tackle those data, and so no data were collected specifically for
this study, per se. The relevant stimuli for the examples pre-
sented in this paper will be described below.

3. Extracting Correlated Regions
3.1. Correlation Images

Given a rtMR image M , which is r × c pixels in size, we can
reshape that image into a column vector X . The vector X will
be of length p = rc, and the pixels which were located at (s, d)
in M are at location i = c(d− 1) + s in X .

For a sequence of n images, we can then compile them into
a single n× p matrix

X =

 XT
1

...
XT

n

 (1)

Thus, we consider that each image is a single data point in a p-
dimensional space, and we have n data points. From this, a p×p
correlation matrix C can be easily calculated. Each element of
the correlation matrix, Cij , shall represent the Pearson product-
moment correlation coefficient between the ith and jth column
of X.

When a pixel of interest is selected, we can look at the col-
umn vector C∗,i to find how it is correlated with every other
pixel across time. Moreover, that column vector can be re-
shaped into an image of size r×c. This is a ”correlation image,”
where the pixel intensities are the correlation coefficients. Cor-
relation images can, in general, be rich with information about
how different parts of the vocal tract are coordinated. Even dis-
parate areas of the vocal tract can sometimes show moderate
correlation, due to particular coordinative relationships. For in-
stance, labial constrictions are often correlated with jaw move-
ment since the jaw is sometimes recruited to bring the lips to-
gether. Here, we focused on extracting localized regions of high
correlation, because of their correspondence with vocal tract
constrictions.

3.2. Manual Selection

A single pixel can be used in defining a correlated region. Se-
lecting a pixel (i.e., a location in the image plane) determines
a correlation image. If the selected pixel is located in a re-
gion of the image plane where constrictions are consistently
observed, then it will be highly correlated with its neighbor-
ing pixels. The correlation image will show high intensities
throughout this region. In practice, the specific pixel chosen
in this region changes the correlation image very little, since all
the pixels in it are highly correlated with each other. Choosing a
good pixel to define a region can be done manually, by inspect-
ing the vocal tract anatomy. To that end, it is usually helpful to
view the mean image (see figure 1), and choose a location near
one known constriction location (e.g., the lips, palate, alveolar
ridge, etc.).

Given a pixel i, we define its correlated region to be all the
pixels in its correlation image which are (a) correlated above a
threshold τ , and (b) connected to i via other pixels which are
correlated above τ . These regions may be found by standard
region growing algorithms [7]. An example set of regions can
be found in figure 1. The regions correspond to constrictions
near the lips, alveolar ridge, sublingual cavity, palate, velum,
pharynx and jaw.

3.3. Automatic Selection

Extracting the correlated regions can also be done automati-
cally. Here, we suggest one possible way. Areas of interest
will show a high degree of localized correlation. Thus, we can
obtain an estimate of the correlation ”density” at each pixel lo-
cation. To that end, we proceed to build a correlation density
map,D, which has the same dimensions (p×1) as a correlation
image. Each element of this density map can be calculated by
averaging the correlations between the corresponding pixel, i,
and its 4-neighbors from the image space. More specifically,

Di = mean(Ci,N4(i)) (2)

where the function N4(b) denotes the pixel 4-neighbors,

N4(x) = {x+ 1, x− 1, x+ c, x− c} (3)

We note that this calculation is similar to kernel density es-
timation. As such, using the 4-neighbors in this instance repre-
sents a box-cart kernel with a width of 2. While any other kernel
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Figure 2: Mean image with correlated regions overlaid (au-
tomatically selected). White crosses mark the selected pixels,
which are used to build the regions. Regions are outlined by
white dots.

could be chosen, we used this kernel in order to get a fine-grain
density map.

Choosing regions can be done iteratively by selecting the
pixel corresponding to the highest value in D, defining the re-
gion as per section 3.2, and then downweighting the elements
of D based on the correlation image of that pixel. This down-
weighting ensures that we avoid pixels from the same region on
subsequent iterations. Specifically, the correlation image will
be,

c = C∗,argimax(D) (4)

We proceed to downweight D using the square of c (i.e.,
the coefficient of determination). Prior to this, we zero all the
negative elements in c, because our regions are defined in terms
of high positive correlation. Each downweighted value of D
will become an element of D̂:

D̂i = Di(1− f(ci)2) (5)

f(x) =

{
x : x > 0
0 : x < 0

(6)

We then we set D = D̂, and repeat this procedure until we
obtain the desired number of regions. Examples of the auto-
matically extracted regions can be seen in figure 2. As with the
regions in figure 1, the regions correspond to constrictions near
the lips, alveolar ridge, sublingual cavity, palate, velum, phar-
ynx and jaw. In addition, the automatic selection method found
regions relevant to the chin (jaw protrusion), velar constrictions
of the tongue, and movement of the laryngeal prominence.

3.4. From Regions to Time Functions

Once a region has been defined, a constriction time function can
be obtained by simply averaging the intensity values of pixels
within the region for each frame. This amounts to estimating
the average tissue density in the segmented region. This kind
of averaging also results in substantial noise reduction, as com-
pared to the signal from an individual pixel. Larger regions will,
in general, show even less noise.

It should be noted that, since the relationship of intensity
values and tissue density is unknown, these measurements are

Figure 3: Extracted articulatory time series for the utterance
/pip@l/. Time progresses from left to right, and lighter shades
represent more tissue (i.e., more constriction) in the region in-
dicated.

inherently relative, not absolute. Also note that averaging rep-
resents the simplest way to combine pixel intensities from a
region. Various other methods could be implemented, from
weighted means to complex transform representations.

4. Examples
For the purposes of illustration, we applied our methods to two
sequences of rtMRI images. The regions were selected manu-
ally for both examples.

4.1. Example 1: Spontaneous Speech Data

We applied our methods to a sequence of rtMRI images taken
from 14.45 seconds of spontaneous speech. The subject was a
male American English speaker. He was asked to speak about
his experiences as a graduate student. Figure 3 displays a set of
7 time functions, corresponding to constrictions in the palatal,
labial, pharyngeal, alveolar regions, as well as near the velum,
jaw and sub-lingual cavity. The time functions were normalized
between 0 and 1. The utterance was ”people,” spoken by the
subject in the context ”I’ve met a lot of interesting people, I’ve
learned ... ,”.

By inspection, one can see that the expected linguistic
events are preserved by this method. The timing of these events
is also clearly visible. For instance, the pair of bilabial closures
are clearly visible. A palatal constriction can be seen between
the two bilabial closures, corresponding to the high front vowel
in the first syllable. The dynamic development of these events
can be observed, as well. Note that the palatal constriction be-
gins during the first labial constriction and ends abruptly, prior
to the second. Distinct characteristics of this speaker are also
visible, such as the strong pharyngeal constriction during the
[l], and the relative lack of jaw movement over the entire utter-
ance.

4.2. Example 2: Speech Errors Data

These methods are exceptionally well-suited to studies focused
on the timing of articulatory events. Consider studies that scru-
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Figure 4: Time series from a single recording session. The plots
represent constrictions in the velar region (solid line) and the
alveolar (dotted line). Time continues from the top graph to the
bottom.

tinize speech errors. To elicit intrusion errors, subjects will of-
ten repeat similar syllables in alternating fashion [8]. These al-
ternations produce rhythmic constrictions, which show up read-
ily with the methods described here.

Figure 4 shows an 8.5 second segment of speech from a
male, native Tamil speaker. The subject was asked to alter-
nately repeat the utterances /kAp/ and /tAp/, producing alter-
nating constrictions in the alveolar and velar regions. Using
our methods, these are seen as highly periodic time signals with
equal frequency, but which are 180 degrees out of phase (see top
of figure 4). The signals remain periodic in this way until errors
begin to occur (see bottom of figure 4). In the errors are par-
ticularly catastrophic, and take a variety of forms. At first, non-
periodic behavior can be observed, followed by synchronization
of phase, and then dominance of only velar constrictions, with
alveolar constrictions being minimized.

5. Discussion
The methods presented here represent a highly data-driven way
of processing image sequence data. User input is not required,
but it can help to guide the region finding, if desired. The appli-
cability of these methods to a particular data set rests on several
assumptions. We assume no – or, possibly slight – head motion.
This assures that the image plane coincides with the reference
frame of interest (e.g., the midsagittal plane). The data should
reflect repeated actions in the reference frame, at a scale larger
than a single pixel. Obviously, the number of frames in the se-
quence should be large enough to mitigate correlations that arise
by chance alone.

Correlated regions take temporal variations into account
from the outset, which makes them very appropriate for rtMRI
data. By averaging pixel intensities across all the pixels in a re-
gion, the resulting time functions become reasonably robust to

noise. The methods are extremely easy to implement, and the
measures are easily and quickly extracted. There is no need to
optimize complex cost functions, so most of the computation
comes from calculating the correlations. If an image sequence
contains images with n pixels, then n2 correlations must be cal-
culated. After that, the regions are defined once, for the entire
sequence of images.

One possible concern is interpretation of the specific val-
ues obtained with methods of this kind. The regions correspond
to constriction degrees, but they do not necessarily imply the
scale of that constriction. If the relative degree of constriction
or the dynamic information is what is needed, there is still a
strong motivation for using methods like those presented here.
In the end, we will not argue that this kind of data analysis
is a panacea. It is, in some ways, a less intuitive way to ap-
proach data of this kind. However, it is a simple, efficient and
robust method for extracting certain variables that are relevant
to speech production.

6. Conclusion
Realtime MR image sequences contain rich information about
movement and coordination within the vocal tract. The most
intuitive way to deal with high-dimensional data of this kind
is by reducing it to air-tissue boundaries. We have described
and illustrated an alternative way to perform the data reduction.
We segment the images into highly correlated regions in the
image plane. Intensity variations in the regions reflect the time-
course of consistent, repeated changes in tissue density along
the midsagittal plane, corresponding to vocal tract constrictions.

We plan to apply these methods to a variety of rtMRI data
that we have collected. In the near future, our plan is to utilize
the correlated regions for direct modeling of feature time series,
similar to the example presented here (see section 4.2).
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